Evaluation of bias and precision in methods of analysis for pragmatic trials with missing outcome data: a simulation study

نویسندگان

  • Royes Joseph
  • Julius Sim
  • Reuben Ogollah
  • Martyn Lewis
چکیده

Randomised controlled trials (RCTs) in arthritis and musculoskeletal conditions generally necessitate longterm follow up of largely self-reported outcomes; thus, such RCTs are prone to missing outcome data, mainly because of participant dropout/non-response. Recent years have seen a rise in the application of methods for dealing with missing outcome data (e.g. mixed models for repeated measures or multiple imputation). However, the implications of the missing data and their handling in pragmatic RCTs (as in arthritis and musculoskeletal conditions) have not received widespread attention to date. In a review of 91 published RCTs in arthritis and musculoskeletal conditions in 2010-11, we found that complete case analysis and single imputation – such as last observation carried forward – are still the most commonly used approaches to analysis of the primary endpoint. None of the RCTs reported a primary analysis or sensitivity analysis based on an assumed ‘missing not at random’ mechanism. The findings indicate a possible belief among researchers that if the dropout rate is low and/or equal between treatment arms, bias is not a concern and advanced methods to handle dropouts are unnecessary. In this study we perform a detailed simulation aimed at understanding the nature and degree of bias in estimates of treatment effect in terms of the level of dropout, the pattern of dropout, the analysis used, and the type of missing data mechanism. Published: 29 November 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند

Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...

متن کامل

A Systematic Review and Meta-Analysis of Randomized Controlled Trials Comparing the Safety of Dapagliflozin in Type 1 Diabetes Patients

Background and Purpose: The dapagliflozin’s safety profile in insulin-treated adult type-1 diabetes mellites (T1DM) patients remains poorly explored. Therefore, this systematic review and meta-analysis compared the risk of all-cause side effects, study discontinuation of participants due to side effects, urinary tract infection (UTI), diabetic ketoacidosis, and hypoglycemia between dapagliflozi...

متن کامل

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

کاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی

Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...

متن کامل

یک روش جدید برای تصحیح سوگرایی تاییدی در مطالعات بررسی صحت تست‌های تشخیصی با استفاده از رویکرد بیزین

Background & Objectives: One of the problems of diagnostic accuracy studies is verification bias. It occurs when standard test performed only for non-representative subsample of study subjects that diagnostic test done for them. In this study we extend a Bayesian method to correct this bias. Methods: Patients that have had at least twice repeated failures in cycles IVF ICSI were included i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013